SQLAlchemy 0.8 Documentation

Release: 0.8.6 | Release Date: March 28, 2014 | Download PDF

MySQL

Support for the MySQL database.

DBAPI Support

The following dialect/DBAPI options are available. Please refer to individual DBAPI sections for connect information.

Supported Versions and Features

SQLAlchemy supports MySQL starting with version 4.1 through modern releases. However, no heroic measures are taken to work around major missing SQL features - if your server version does not support sub-selects, for example, they won’t work in SQLAlchemy either.

See the official MySQL documentation for detailed information about features supported in any given server release.

Connection Timeouts

MySQL features an automatic connection close behavior, for connections that have been idle for eight hours or more. To circumvent having this issue, use the pool_recycle option which controls the maximum age of any connection:

engine = create_engine('mysql+mysqldb://...', pool_recycle=3600)

CREATE TABLE arguments including Storage Engines

MySQL’s CREATE TABLE syntax includes a wide array of special options, including ENGINE, CHARSET, MAX_ROWS, ROW_FORMAT, INSERT_METHOD, and many more. To accommodate the rendering of these arguments, specify the form mysql_argument_name="value". For example, to specify a table with ENGINE of InnoDB, CHARSET of utf8, and KEY_BLOCK_SIZE of 1024:

Table('mytable', metadata,
      Column('data', String(32)),
      mysql_engine='InnoDB',
      mysql_charset='utf8',
      mysql_key_block_size="1024"
     )

The MySQL dialect will normally transfer any keyword specified as mysql_keyword_name to be rendered as KEYWORD_NAME in the CREATE TABLE statement. A handful of these names will render with a space instead of an underscore; to support this, the MySQL dialect has awareness of these particular names, which include DATA DIRECTORY (e.g. mysql_data_directory), CHARACTER SET (e.g. mysql_character_set) and INDEX DIRECTORY (e.g. mysql_index_directory).

The most common argument is mysql_engine, which refers to the storage engine for the table. Historically, MySQL server installations would default to MyISAM for this value, although newer versions may be defaulting to InnoDB. The InnoDB engine is typically preferred for its support of transactions and foreign keys.

A Table that is created in a MySQL database with a storage engine of MyISAM will be essentially non-transactional, meaning any INSERT/UPDATE/DELETE statement referring to this table will be invoked as autocommit. It also will have no support for foreign key constraints; while the CREATE TABLE statement accepts foreign key options, when using the MyISAM storage engine these arguments are discarded. Reflecting such a table will also produce no foreign key constraint information.

For fully atomic transactions as well as support for foreign key constraints, all participating CREATE TABLE statements must specify a transactional engine, which in the vast majority of cases is InnoDB.

See also

The InnoDB Storage Engine - on the MySQL website.

Case Sensitivity and Table Reflection

MySQL has inconsistent support for case-sensitive identifier names, basing support on specific details of the underlying operating system. However, it has been observed that no matter what case sensitivity behavior is present, the names of tables in foreign key declarations are always received from the database as all-lower case, making it impossible to accurately reflect a schema where inter-related tables use mixed-case identifier names.

Therefore it is strongly advised that table names be declared as all lower case both within SQLAlchemy as well as on the MySQL database itself, especially if database reflection features are to be used.

Transaction Isolation Level

create_engine() accepts an isolation_level parameter which results in the command SET SESSION TRANSACTION ISOLATION LEVEL <level> being invoked for every new connection. Valid values for this parameter are READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ, and SERIALIZABLE:

engine = create_engine(
                "mysql://scott:tiger@localhost/test",
                isolation_level="READ UNCOMMITTED"
            )

New in version 0.7.6.

AUTO_INCREMENT Behavior

When creating tables, SQLAlchemy will automatically set AUTO_INCREMENT on the first Integer primary key column which is not marked as a foreign key:

>>> t = Table('mytable', metadata,
...   Column('mytable_id', Integer, primary_key=True)
... )
>>> t.create()
CREATE TABLE mytable (
        id INTEGER NOT NULL AUTO_INCREMENT,
        PRIMARY KEY (id)
)

You can disable this behavior by passing False to the autoincrement argument of Column. This flag can also be used to enable auto-increment on a secondary column in a multi-column key for some storage engines:

Table('mytable', metadata,
      Column('gid', Integer, primary_key=True, autoincrement=False),
      Column('id', Integer, primary_key=True)
     )

Ansi Quoting Style

MySQL features two varieties of identifier “quoting style”, one using backticks and the other using quotes, e.g. `some_identifier` vs. "some_identifier". All MySQL dialects detect which version is in use by checking the value of sql_mode when a connection is first established with a particular Engine. This quoting style comes into play when rendering table and column names as well as when reflecting existing database structures. The detection is entirely automatic and no special configuration is needed to use either quoting style.

Changed in version 0.6: detection of ANSI quoting style is entirely automatic, there’s no longer any end-user create_engine() options in this regard.

MySQL SQL Extensions

Many of the MySQL SQL extensions are handled through SQLAlchemy’s generic function and operator support:

table.select(table.c.password==func.md5('plaintext'))
table.select(table.c.username.op('regexp')('^[a-d]'))

And of course any valid MySQL statement can be executed as a string as well.

Some limited direct support for MySQL extensions to SQL is currently available.

  • SELECT pragma:

    select(..., prefixes=['HIGH_PRIORITY', 'SQL_SMALL_RESULT'])
  • UPDATE with LIMIT:

    update(..., mysql_limit=10)

rowcount Support

SQLAlchemy standardizes the DBAPI cursor.rowcount attribute to be the usual definition of “number of rows matched by an UPDATE or DELETE” statement. This is in contradiction to the default setting on most MySQL DBAPI drivers, which is “number of rows actually modified/deleted”. For this reason, the SQLAlchemy MySQL dialects always set the constants.CLIENT.FOUND_ROWS flag, or whatever is equivalent for the DBAPI in use, on connect, unless the flag value is overridden using DBAPI-specific options (such as client_flag for the MySQL-Python driver, found_rows for the OurSQL driver).

See also:

ResultProxy.rowcount

CAST Support

MySQL documents the CAST operator as available in version 4.0.2. When using the SQLAlchemy cast() function, SQLAlchemy will not render the CAST token on MySQL before this version, based on server version detection, instead rendering the internal expression directly.

CAST may still not be desirable on an early MySQL version post-4.0.2, as it didn’t add all datatype support until 4.1.1. If your application falls into this narrow area, the behavior of CAST can be controlled using the Custom SQL Constructs and Compilation Extension system, as per the recipe below:

from sqlalchemy.sql.expression import Cast
from sqlalchemy.ext.compiler import compiles

@compiles(Cast, 'mysql')
def _check_mysql_version(element, compiler, **kw):
    if compiler.dialect.server_version_info < (4, 1, 0):
        return compiler.process(element.clause, **kw)
    else:
        return compiler.visit_cast(element, **kw)

The above function, which only needs to be declared once within an application, overrides the compilation of the cast() construct to check for version 4.1.0 before fully rendering CAST; else the internal element of the construct is rendered directly.

MySQL Specific Index Options

MySQL-specific extensions to the Index construct are available.

Index Length

MySQL provides an option to create index entries with a certain length, where “length” refers to the number of characters or bytes in each value which will become part of the index. SQLAlchemy provides this feature via the mysql_length parameter:

Index('my_index', my_table.c.data, mysql_length=10)

Index('a_b_idx', my_table.c.a, my_table.c.b, mysql_length={'a': 4, 'b': 9})

Prefix lengths are given in characters for nonbinary string types and in bytes for binary string types. The value passed to the keyword argument must be either an integer (and, thus, specify the same prefix length value for all columns of the index) or a dict in which keys are column names and values are prefix length values for corresponding columns. MySQL only allows a length for a column of an index if it is for a CHAR, VARCHAR, TEXT, BINARY, VARBINARY and BLOB.

New in version 0.8.2: mysql_length may now be specified as a dictionary for use with composite indexes.

Index Types

Some MySQL storage engines permit you to specify an index type when creating an index or primary key constraint. SQLAlchemy provides this feature via the mysql_using parameter on Index:

Index('my_index', my_table.c.data, mysql_using='hash')

As well as the mysql_using parameter on PrimaryKeyConstraint:

PrimaryKeyConstraint("data", mysql_using='hash')

The value passed to the keyword argument will be simply passed through to the underlying CREATE INDEX or PRIMARY KEY clause, so it must be a valid index type for your MySQL storage engine.

More information can be found at:

http://dev.mysql.com/doc/refman/5.0/en/create-index.html

http://dev.mysql.com/doc/refman/5.0/en/create-table.html

MySQL Foreign Keys

MySQL’s behavior regarding foreign keys has some important caveats.

Foreign Key Arguments to Avoid

MySQL does not support the foreign key arguments “DEFERRABLE”, “INITIALLY”, or “MATCH”. Using the deferrable or initially keyword argument with ForeignKeyConstraint or ForeignKey will have the effect of these keywords being ignored in a DDL expression along with a warning, however this behavior will change in a future release.

In order to use these keywords on a foreign key while having them ignored on a MySQL backend, use a custom compile rule:

from sqlalchemy.ext.compiler import compiles
from sqlalchemy.schema import ForeignKeyConstraint

@compiles(ForeignKeyConstraint, "mysql")
def process(element, compiler, **kw):
    element.deferrable = element.initially = None
    return compiler.visit_foreign_key_constraint(element, **kw)

Changed in version 0.8.3: - the MySQL backend will emit a warning when the the deferrable or initially keyword arguments of ForeignKeyConstraint and ForeignKey are used. The arguments will no longer be ignored in 0.9.

The “MATCH” keyword is in fact more insidious, and in a future release will be explicitly disallowed by SQLAlchemy in conjunction with the MySQL backend. This argument is silently ignored by MySQL, but in addition has the effect of ON UPDATE and ON DELETE options also being ignored by the backend. Therefore MATCH should never be used with the MySQL backend; as is the case with DEFERRABLE and INITIALLY, custom compilation rules can be used to correct a MySQL ForeignKeyConstraint at DDL definition time.

New in version 0.8.3: - the MySQL backend will emit a warning when the match keyword is used with ForeignKeyConstraint or ForeignKey. This will be a CompileError in 0.9.

Reflection of Foreign Key Constraints

Not all MySQL storage engines support foreign keys. When using the very common MyISAM MySQL storage engine, the information loaded by table reflection will not include foreign keys. For these tables, you may supply a ForeignKeyConstraint at reflection time:

Table('mytable', metadata,
      ForeignKeyConstraint(['other_id'], ['othertable.other_id']),
      autoload=True
     )

MySQL Data Types

As with all SQLAlchemy dialects, all UPPERCASE types that are known to be valid with MySQL are importable from the top level dialect:

from sqlalchemy.dialects.mysql import \
        BIGINT, BINARY, BIT, BLOB, BOOLEAN, CHAR, DATE, \
        DATETIME, DECIMAL, DECIMAL, DOUBLE, ENUM, FLOAT, INTEGER, \
        LONGBLOB, LONGTEXT, MEDIUMBLOB, MEDIUMINT, MEDIUMTEXT, NCHAR, \
        NUMERIC, NVARCHAR, REAL, SET, SMALLINT, TEXT, TIME, TIMESTAMP, \
        TINYBLOB, TINYINT, TINYTEXT, VARBINARY, VARCHAR, YEAR

Types which are specific to MySQL, or have MySQL-specific construction arguments, are as follows:

class sqlalchemy.dialects.mysql.BIGINT(display_width=None, **kw)

Bases: sqlalchemy.dialects.mysql.base._IntegerType, sqlalchemy.types.BIGINT

MySQL BIGINTEGER type.

__init__(display_width=None, **kw)

Construct a BIGINTEGER.

Parameters:
  • display_width – Optional, maximum display width for this number.
  • unsigned – a boolean, optional.
  • zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
class sqlalchemy.dialects.mysql.BINARY(length=None)

Bases: sqlalchemy.types._Binary

The SQL BINARY type.

class sqlalchemy.dialects.mysql.BIT(length=None)

Bases: sqlalchemy.types.TypeEngine

MySQL BIT type.

This type is for MySQL 5.0.3 or greater for MyISAM, and 5.0.5 or greater for MyISAM, MEMORY, InnoDB and BDB. For older versions, use a MSTinyInteger() type.

__init__(length=None)

Construct a BIT.

Parameters:length – Optional, number of bits.
class sqlalchemy.dialects.mysql.BLOB(length=None)

Bases: sqlalchemy.types.LargeBinary

The SQL BLOB type.

__init__(length=None)

Construct a LargeBinary type.

Parameters:length – optional, a length for the column for use in DDL statements, for those BLOB types that accept a length (i.e. MySQL). It does not produce a small BINARY/VARBINARY type - use the BINARY/VARBINARY types specifically for those. May be safely omitted if no CREATE TABLE will be issued. Certain databases may require a length for use in DDL, and will raise an exception when the CREATE TABLE DDL is issued.
class sqlalchemy.dialects.mysql.BOOLEAN(create_constraint=True, name=None)

Bases: sqlalchemy.types.Boolean

The SQL BOOLEAN type.

__init__(create_constraint=True, name=None)

Construct a Boolean.

Parameters:
  • create_constraint – defaults to True. If the boolean is generated as an int/smallint, also create a CHECK constraint on the table that ensures 1 or 0 as a value.
  • name – if a CHECK constraint is generated, specify the name of the constraint.
class sqlalchemy.dialects.mysql.CHAR(length=None, **kwargs)

Bases: sqlalchemy.dialects.mysql.base._StringType, sqlalchemy.types.CHAR

MySQL CHAR type, for fixed-length character data.

__init__(length=None, **kwargs)

Construct a CHAR.

Parameters:
  • length – Maximum data length, in characters.
  • binary – Optional, use the default binary collation for the national character set. This does not affect the type of data stored, use a BINARY type for binary data.
  • collation – Optional, request a particular collation. Must be compatible with the national character set.
class sqlalchemy.dialects.mysql.DATE(*args, **kwargs)

Bases: sqlalchemy.types.Date

The SQL DATE type.

__init__(*args, **kwargs)

Support implementations that were passing arguments

class sqlalchemy.dialects.mysql.DATETIME(timezone=False, fsp=None)

Bases: sqlalchemy.types.DATETIME

MySQL DATETIME type.

__init__(timezone=False, fsp=None)

Construct a MySQL DATETIME type.

Parameters:
  • timezone – not used by the MySQL dialect.
  • fsp

    fractional seconds precision value. MySQL 5.6.4 supports storage of fractional seconds; this parameter will be used when emitting DDL for the DATETIME type.

    Note

    DBAPI driver support for fractional seconds may be limited; current support includes MySQL Connector/Python.

New in version 0.8.5: Added MySQL-specific mysql.DATETIME with fractional seconds support.

class sqlalchemy.dialects.mysql.DECIMAL(precision=None, scale=None, asdecimal=True, **kw)

Bases: sqlalchemy.dialects.mysql.base._NumericType, sqlalchemy.types.DECIMAL

MySQL DECIMAL type.

__init__(precision=None, scale=None, asdecimal=True, **kw)

Construct a DECIMAL.

Parameters:
  • precision – Total digits in this number. If scale and precision are both None, values are stored to limits allowed by the server.
  • scale – The number of digits after the decimal point.
  • unsigned – a boolean, optional.
  • zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
class sqlalchemy.dialects.mysql.DOUBLE(precision=None, scale=None, asdecimal=True, **kw)

Bases: sqlalchemy.dialects.mysql.base._FloatType

MySQL DOUBLE type.

__init__(precision=None, scale=None, asdecimal=True, **kw)

Construct a DOUBLE.

Parameters:
  • precision – Total digits in this number. If scale and precision are both None, values are stored to limits allowed by the server.
  • scale – The number of digits after the decimal point.
  • unsigned – a boolean, optional.
  • zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
class sqlalchemy.dialects.mysql.ENUM(*enums, **kw)

Bases: sqlalchemy.types.Enum, sqlalchemy.dialects.mysql.base._StringType

MySQL ENUM type.

__init__(*enums, **kw)

Construct an ENUM.

Example:

Column(‘myenum’, MSEnum(“foo”, “bar”, “baz”))
Parameters:
  • enums – The range of valid values for this ENUM. Values will be quoted when generating the schema according to the quoting flag (see below).
  • strict – Defaults to False: ensure that a given value is in this ENUM’s range of permissible values when inserting or updating rows. Note that MySQL will not raise a fatal error if you attempt to store an out of range value- an alternate value will be stored instead. (See MySQL ENUM documentation.)
  • charset – Optional, a column-level character set for this string value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.
  • collation – Optional, a column-level collation for this string value. Takes precedence to ‘binary’ short-hand.
  • ascii – Defaults to False: short-hand for the latin1 character set, generates ASCII in schema.
  • unicode – Defaults to False: short-hand for the ucs2 character set, generates UNICODE in schema.
  • binary – Defaults to False: short-hand, pick the binary collation type that matches the column’s character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data.
  • quoting

    Defaults to ‘auto’: automatically determine enum value quoting. If all enum values are surrounded by the same quoting character, then use ‘quoted’ mode. Otherwise, use ‘unquoted’ mode.

    ‘quoted’: values in enums are already quoted, they will be used directly when generating the schema - this usage is deprecated.

    ‘unquoted’: values in enums are not quoted, they will be escaped and surrounded by single quotes when generating the schema.

    Previous versions of this type always required manually quoted values to be supplied; future versions will always quote the string literals for you. This is a transitional option.

class sqlalchemy.dialects.mysql.FLOAT(precision=None, scale=None, asdecimal=False, **kw)

Bases: sqlalchemy.dialects.mysql.base._FloatType, sqlalchemy.types.FLOAT

MySQL FLOAT type.

__init__(precision=None, scale=None, asdecimal=False, **kw)

Construct a FLOAT.

Parameters:
  • precision – Total digits in this number. If scale and precision are both None, values are stored to limits allowed by the server.
  • scale – The number of digits after the decimal point.
  • unsigned – a boolean, optional.
  • zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
class sqlalchemy.dialects.mysql.INTEGER(display_width=None, **kw)

Bases: sqlalchemy.dialects.mysql.base._IntegerType, sqlalchemy.types.INTEGER

MySQL INTEGER type.

__init__(display_width=None, **kw)

Construct an INTEGER.

Parameters:
  • display_width – Optional, maximum display width for this number.
  • unsigned – a boolean, optional.
  • zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
class sqlalchemy.dialects.mysql.LONGBLOB(length=None)

Bases: sqlalchemy.types._Binary

MySQL LONGBLOB type, for binary data up to 2^32 bytes.

class sqlalchemy.dialects.mysql.LONGTEXT(**kwargs)

Bases: sqlalchemy.dialects.mysql.base._StringType

MySQL LONGTEXT type, for text up to 2^32 characters.

__init__(**kwargs)

Construct a LONGTEXT.

Parameters:
  • charset – Optional, a column-level character set for this string value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.
  • collation – Optional, a column-level collation for this string value. Takes precedence to ‘binary’ short-hand.
  • ascii – Defaults to False: short-hand for the latin1 character set, generates ASCII in schema.
  • unicode – Defaults to False: short-hand for the ucs2 character set, generates UNICODE in schema.
  • national – Optional. If true, use the server’s configured national character set.
  • binary – Defaults to False: short-hand, pick the binary collation type that matches the column’s character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data.
class sqlalchemy.dialects.mysql.MEDIUMBLOB(length=None)

Bases: sqlalchemy.types._Binary

MySQL MEDIUMBLOB type, for binary data up to 2^24 bytes.

class sqlalchemy.dialects.mysql.MEDIUMINT(display_width=None, **kw)

Bases: sqlalchemy.dialects.mysql.base._IntegerType

MySQL MEDIUMINTEGER type.

__init__(display_width=None, **kw)

Construct a MEDIUMINTEGER

Parameters:
  • display_width – Optional, maximum display width for this number.
  • unsigned – a boolean, optional.
  • zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
class sqlalchemy.dialects.mysql.MEDIUMTEXT(**kwargs)

Bases: sqlalchemy.dialects.mysql.base._StringType

MySQL MEDIUMTEXT type, for text up to 2^24 characters.

__init__(**kwargs)

Construct a MEDIUMTEXT.

Parameters:
  • charset – Optional, a column-level character set for this string value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.
  • collation – Optional, a column-level collation for this string value. Takes precedence to ‘binary’ short-hand.
  • ascii – Defaults to False: short-hand for the latin1 character set, generates ASCII in schema.
  • unicode – Defaults to False: short-hand for the ucs2 character set, generates UNICODE in schema.
  • national – Optional. If true, use the server’s configured national character set.
  • binary – Defaults to False: short-hand, pick the binary collation type that matches the column’s character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data.
class sqlalchemy.dialects.mysql.NCHAR(length=None, **kwargs)

Bases: sqlalchemy.dialects.mysql.base._StringType, sqlalchemy.types.NCHAR

MySQL NCHAR type.

For fixed-length character data in the server’s configured national character set.

__init__(length=None, **kwargs)

Construct an NCHAR.

Parameters:
  • length – Maximum data length, in characters.
  • binary – Optional, use the default binary collation for the national character set. This does not affect the type of data stored, use a BINARY type for binary data.
  • collation – Optional, request a particular collation. Must be compatible with the national character set.
class sqlalchemy.dialects.mysql.NUMERIC(precision=None, scale=None, asdecimal=True, **kw)

Bases: sqlalchemy.dialects.mysql.base._NumericType, sqlalchemy.types.NUMERIC

MySQL NUMERIC type.

__init__(precision=None, scale=None, asdecimal=True, **kw)

Construct a NUMERIC.

Parameters:
  • precision – Total digits in this number. If scale and precision are both None, values are stored to limits allowed by the server.
  • scale – The number of digits after the decimal point.
  • unsigned – a boolean, optional.
  • zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
class sqlalchemy.dialects.mysql.NVARCHAR(length=None, **kwargs)

Bases: sqlalchemy.dialects.mysql.base._StringType, sqlalchemy.types.NVARCHAR

MySQL NVARCHAR type.

For variable-length character data in the server’s configured national character set.

__init__(length=None, **kwargs)

Construct an NVARCHAR.

Parameters:
  • length – Maximum data length, in characters.
  • binary – Optional, use the default binary collation for the national character set. This does not affect the type of data stored, use a BINARY type for binary data.
  • collation – Optional, request a particular collation. Must be compatible with the national character set.
class sqlalchemy.dialects.mysql.REAL(precision=None, scale=None, asdecimal=True, **kw)

Bases: sqlalchemy.dialects.mysql.base._FloatType, sqlalchemy.types.REAL

MySQL REAL type.

__init__(precision=None, scale=None, asdecimal=True, **kw)

Construct a REAL.

Parameters:
  • precision – Total digits in this number. If scale and precision are both None, values are stored to limits allowed by the server.
  • scale – The number of digits after the decimal point.
  • unsigned – a boolean, optional.
  • zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
class sqlalchemy.dialects.mysql.SET(*values, **kw)

Bases: sqlalchemy.dialects.mysql.base._StringType

MySQL SET type.

__init__(*values, **kw)

Construct a SET.

Example:

Column('myset', MSSet("'foo'", "'bar'", "'baz'"))
Parameters:
  • values – The range of valid values for this SET. Values will be used exactly as they appear when generating schemas. Strings must be quoted, as in the example above. Single-quotes are suggested for ANSI compatibility and are required for portability to servers with ANSI_QUOTES enabled.
  • charset – Optional, a column-level character set for this string value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.
  • collation – Optional, a column-level collation for this string value. Takes precedence to ‘binary’ short-hand.
  • ascii – Defaults to False: short-hand for the latin1 character set, generates ASCII in schema.
  • unicode – Defaults to False: short-hand for the ucs2 character set, generates UNICODE in schema.
  • binary – Defaults to False: short-hand, pick the binary collation type that matches the column’s character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data.
class sqlalchemy.dialects.mysql.SMALLINT(display_width=None, **kw)

Bases: sqlalchemy.dialects.mysql.base._IntegerType, sqlalchemy.types.SMALLINT

MySQL SMALLINTEGER type.

__init__(display_width=None, **kw)

Construct a SMALLINTEGER.

Parameters:
  • display_width – Optional, maximum display width for this number.
  • unsigned – a boolean, optional.
  • zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
class sqlalchemy.dialects.mysql.TEXT(length=None, **kw)

Bases: sqlalchemy.dialects.mysql.base._StringType, sqlalchemy.types.TEXT

MySQL TEXT type, for text up to 2^16 characters.

__init__(length=None, **kw)

Construct a TEXT.

Parameters:
  • length – Optional, if provided the server may optimize storage by substituting the smallest TEXT type sufficient to store length characters.
  • charset – Optional, a column-level character set for this string value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.
  • collation – Optional, a column-level collation for this string value. Takes precedence to ‘binary’ short-hand.
  • ascii – Defaults to False: short-hand for the latin1 character set, generates ASCII in schema.
  • unicode – Defaults to False: short-hand for the ucs2 character set, generates UNICODE in schema.
  • national – Optional. If true, use the server’s configured national character set.
  • binary – Defaults to False: short-hand, pick the binary collation type that matches the column’s character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data.
class sqlalchemy.dialects.mysql.TIME(timezone=False, fsp=None)

Bases: sqlalchemy.types.TIME

MySQL TIME type.

__init__(timezone=False, fsp=None)

Construct a MySQL TIME type.

Parameters:
  • timezone – not used by the MySQL dialect.
  • fsp

    fractional seconds precision value. MySQL 5.6 supports storage of fractional seconds; this parameter will be used when emitting DDL for the TIME type.

    Note

    DBAPI driver support for fractional seconds may be limited; current support includes MySQL Connector/Python.

New in version 0.8: The MySQL-specific TIME type as well as fractional seconds support.

class sqlalchemy.dialects.mysql.TIMESTAMP(timezone=False, fsp=None)

Bases: sqlalchemy.types.TIMESTAMP

MySQL TIMESTAMP type.

__init__(timezone=False, fsp=None)

Construct a MySQL TIMESTAMP type.

Parameters:
  • timezone – not used by the MySQL dialect.
  • fsp

    fractional seconds precision value. MySQL 5.6.4 supports storage of fractional seconds; this parameter will be used when emitting DDL for the TIMESTAMP type.

    Note

    DBAPI driver support for fractional seconds may be limited; current support includes MySQL Connector/Python.

New in version 0.8.5: Added MySQL-specific mysql.TIMESTAMP with fractional seconds support.

class sqlalchemy.dialects.mysql.TINYBLOB(length=None)

Bases: sqlalchemy.types._Binary

MySQL TINYBLOB type, for binary data up to 2^8 bytes.

class sqlalchemy.dialects.mysql.TINYINT(display_width=None, **kw)

Bases: sqlalchemy.dialects.mysql.base._IntegerType

MySQL TINYINT type.

__init__(display_width=None, **kw)

Construct a TINYINT.

Parameters:
  • display_width – Optional, maximum display width for this number.
  • unsigned – a boolean, optional.
  • zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
class sqlalchemy.dialects.mysql.TINYTEXT(**kwargs)

Bases: sqlalchemy.dialects.mysql.base._StringType

MySQL TINYTEXT type, for text up to 2^8 characters.

__init__(**kwargs)

Construct a TINYTEXT.

Parameters:
  • charset – Optional, a column-level character set for this string value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.
  • collation – Optional, a column-level collation for this string value. Takes precedence to ‘binary’ short-hand.
  • ascii – Defaults to False: short-hand for the latin1 character set, generates ASCII in schema.
  • unicode – Defaults to False: short-hand for the ucs2 character set, generates UNICODE in schema.
  • national – Optional. If true, use the server’s configured national character set.
  • binary – Defaults to False: short-hand, pick the binary collation type that matches the column’s character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data.
class sqlalchemy.dialects.mysql.VARBINARY(length=None)

Bases: sqlalchemy.types._Binary

The SQL VARBINARY type.

class sqlalchemy.dialects.mysql.VARCHAR(length=None, **kwargs)

Bases: sqlalchemy.dialects.mysql.base._StringType, sqlalchemy.types.VARCHAR

MySQL VARCHAR type, for variable-length character data.

__init__(length=None, **kwargs)

Construct a VARCHAR.

Parameters:
  • charset – Optional, a column-level character set for this string value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.
  • collation – Optional, a column-level collation for this string value. Takes precedence to ‘binary’ short-hand.
  • ascii – Defaults to False: short-hand for the latin1 character set, generates ASCII in schema.
  • unicode – Defaults to False: short-hand for the ucs2 character set, generates UNICODE in schema.
  • national – Optional. If true, use the server’s configured national character set.
  • binary – Defaults to False: short-hand, pick the binary collation type that matches the column’s character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data.
class sqlalchemy.dialects.mysql.YEAR(display_width=None)

Bases: sqlalchemy.types.TypeEngine

MySQL YEAR type, for single byte storage of years 1901-2155.

MySQL-Python

Support for the MySQL database via the MySQL-Python driver.

DBAPI

Documentation and download information (if applicable) for MySQL-Python is available at: http://sourceforge.net/projects/mysql-python

Connecting

Connect String:

mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>

Unicode

MySQLdb requires a “charset” parameter to be passed in order for it to handle non-ASCII characters correctly. When this parameter is passed, MySQLdb will also implicitly set the “use_unicode” flag to true, which means that it will return Python unicode objects instead of bytestrings. However, SQLAlchemy’s decode process, when C extensions are enabled, is orders of magnitude faster than that of MySQLdb as it does not call into Python functions to do so. Therefore, the recommended URL to use for unicode will include both charset and use_unicode=0:

create_engine("mysql+mysqldb://user:pass@host/dbname?charset=utf8&use_unicode=0")

As of this writing, MySQLdb only runs on Python 2. It is not known how MySQLdb behaves on Python 3 as far as unicode decoding.

Known Issues

MySQL-python version 1.2.2 has a serious memory leak related to unicode conversion, a feature which is disabled via use_unicode=0. It is strongly advised to use the latest version of MySQL-Python.

OurSQL

Support for the MySQL database via the OurSQL driver.

DBAPI

Documentation and download information (if applicable) for OurSQL is available at: http://packages.python.org/oursql/

Connecting

Connect String:

mysql+oursql://<user>:<password>@<host>[:<port>]/<dbname>

Unicode

oursql defaults to using utf8 as the connection charset, but other encodings may be used instead. Like the MySQL-Python driver, unicode support can be completely disabled:

# oursql sets the connection charset to utf8 automatically; all strings come
# back as utf8 str
create_engine('mysql+oursql:///mydb?use_unicode=0')

To not automatically use utf8 and instead use whatever the connection defaults to, there is a separate parameter:

# use the default connection charset; all strings come back as unicode
create_engine('mysql+oursql:///mydb?default_charset=1')

# use latin1 as the connection charset; all strings come back as unicode
create_engine('mysql+oursql:///mydb?charset=latin1')

pymysql

Support for the MySQL database via the PyMySQL driver.

DBAPI

Documentation and download information (if applicable) for PyMySQL is available at: http://code.google.com/p/pymysql/

Connecting

Connect String:

mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]

MySQL-Python Compatibility

The pymysql DBAPI is a pure Python port of the MySQL-python (MySQLdb) driver, and targets 100% compatibility. Most behavioral notes for MySQL-python apply to the pymysql driver as well.

MySQL-Connector

Support for the MySQL database via the MySQL Connector/Python driver.

DBAPI

Documentation and download information (if applicable) for MySQL Connector/Python is available at: http://dev.mysql.com/downloads/connector/python/

Connecting

Connect String:

mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>

cymysql

Support for the MySQL database via the CyMySQL driver.

DBAPI

Documentation and download information (if applicable) for CyMySQL is available at: https://github.com/nakagami/CyMySQL

Connecting

Connect String:

mysql+cymysql://<username>:<password>@<host>/<dbname>[?<options>]

Google App Engine

Support for the MySQL database via the Google Cloud SQL driver.

This dialect is based primarily on the mysql.mysqldb dialect with minimal changes.

New in version 0.7.8.

DBAPI

Documentation and download information (if applicable) for Google Cloud SQL is available at: https://developers.google.com/appengine/docs/python/cloud-sql/developers-guide

Connecting

Connect String:

mysql+gaerdbms:///<dbname>?instance=<instancename>

Pooling

Google App Engine connections appear to be randomly recycled, so the dialect does not pool connections. The NullPool implementation is installed within the Engine by default.

pyodbc

Support for the MySQL database via the PyODBC driver.

DBAPI

Documentation and download information (if applicable) for PyODBC is available at: http://pypi.python.org/pypi/pyodbc/

Connecting

Connect String:

mysql+pyodbc://<username>:<password>@<dsnname>

Limitations

The mysql-pyodbc dialect is subject to unresolved character encoding issues which exist within the current ODBC drivers available. (see http://code.google.com/p/pyodbc/issues/detail?id=25). Consider usage of OurSQL, MySQLdb, or MySQL-connector/Python.

zxjdbc

Support for the MySQL database via the zxjdbc for Jython driver.

DBAPI

Drivers for this database are available at: http://dev.mysql.com/downloads/connector/j/

Connecting

Connect String:

mysql+zxjdbc://<user>:<password>@<hostname>[:<port>]/<database>

Character Sets

SQLAlchemy zxjdbc dialects pass unicode straight through to the zxjdbc/JDBC layer. To allow multiple character sets to be sent from the MySQL Connector/J JDBC driver, by default SQLAlchemy sets its characterEncoding connection property to UTF-8. It may be overriden via a create_engine URL parameter.