Release: 0.9.10 legacy version | Release Date: July 22, 2015

SQLAlchemy 0.9 Documentation

Additional Persistence Techniques

Embedding SQL Insert/Update Expressions into a Flush

This feature allows the value of a database column to be set to a SQL expression instead of a literal value. It’s especially useful for atomic updates, calling stored procedures, etc. All you do is assign an expression to an attribute:

class SomeClass(object):
    pass
mapper(SomeClass, some_table)

someobject = session.query(SomeClass).get(5)

# set 'value' attribute to a SQL expression adding one
someobject.value = some_table.c.value + 1

# issues "UPDATE some_table SET value=value+1"
session.commit()

This technique works both for INSERT and UPDATE statements. After the flush/commit operation, the value attribute on someobject above is expired, so that when next accessed the newly generated value will be loaded from the database.

Using SQL Expressions with Sessions

SQL expressions and strings can be executed via the Session within its transactional context. This is most easily accomplished using the execute() method, which returns a ResultProxy in the same manner as an Engine or Connection:

Session = sessionmaker(bind=engine)
session = Session()

# execute a string statement
result = session.execute("select * from table where id=:id", {'id':7})

# execute a SQL expression construct
result = session.execute(select([mytable]).where(mytable.c.id==7))

The current Connection held by the Session is accessible using the connection() method:

connection = session.connection()

The examples above deal with a Session that’s bound to a single Engine or Connection. To execute statements using a Session which is bound either to multiple engines, or none at all (i.e. relies upon bound metadata), both execute() and connection() accept a mapper keyword argument, which is passed a mapped class or Mapper instance, which is used to locate the proper context for the desired engine:

Session = sessionmaker()
session = Session()

# need to specify mapper or class when executing
result = session.execute("select * from table where id=:id", {'id':7}, mapper=MyMappedClass)

result = session.execute(select([mytable], mytable.c.id==7), mapper=MyMappedClass)

connection = session.connection(MyMappedClass)

Partitioning Strategies

Simple Vertical Partitioning

Vertical partitioning places different kinds of objects, or different tables, across multiple databases:

engine1 = create_engine('postgresql://db1')
engine2 = create_engine('postgresql://db2')

Session = sessionmaker(twophase=True)

# bind User operations to engine 1, Account operations to engine 2
Session.configure(binds={User:engine1, Account:engine2})

session = Session()

Above, operations against either class will make usage of the Engine linked to that class. Upon a flush operation, similar rules take place to ensure each class is written to the right database.

The transactions among the multiple databases can optionally be coordinated via two phase commit, if the underlying backend supports it. See Enabling Two-Phase Commit for an example.

Custom Vertical Partitioning

More comprehensive rule-based class-level partitioning can be built by overriding the Session.get_bind() method. Below we illustrate a custom Session which delivers the following rules:

  1. Flush operations are delivered to the engine named master.
  2. Operations on objects that subclass MyOtherClass all occur on the other engine.
  3. Read operations for all other classes occur on a random choice of the slave1 or slave2 database.
engines = {
    'master':create_engine("sqlite:///master.db"),
    'other':create_engine("sqlite:///other.db"),
    'slave1':create_engine("sqlite:///slave1.db"),
    'slave2':create_engine("sqlite:///slave2.db"),
}

from sqlalchemy.orm import Session, sessionmaker
import random

class RoutingSession(Session):
    def get_bind(self, mapper=None, clause=None):
        if mapper and issubclass(mapper.class_, MyOtherClass):
            return engines['other']
        elif self._flushing:
            return engines['master']
        else:
            return engines[
                random.choice(['slave1','slave2'])
            ]

The above Session class is plugged in using the class_ argument to sessionmaker:

Session = sessionmaker(class_=RoutingSession)

This approach can be combined with multiple MetaData objects, using an approach such as that of using the declarative __abstract__ keyword, described at __abstract__.

Horizontal Partitioning

Horizontal partitioning partitions the rows of a single table (or a set of tables) across multiple databases.

See the “sharding” example: Horizontal Sharding.

Previous: Transactions and Connection Management Next: Contextual/Thread-local Sessions