Release: 1.2.12 current release | Release Date: September 19, 2018

SQLAlchemy 1.2 Documentation

Additional Persistence Techniques

Embedding SQL Insert/Update Expressions into a Flush

This feature allows the value of a database column to be set to a SQL expression instead of a literal value. It’s especially useful for atomic updates, calling stored procedures, etc. All you do is assign an expression to an attribute:

class SomeClass(object):
    pass
mapper(SomeClass, some_table)

someobject = session.query(SomeClass).get(5)

# set 'value' attribute to a SQL expression adding one
someobject.value = some_table.c.value + 1

# issues "UPDATE some_table SET value=value+1"
session.commit()

This technique works both for INSERT and UPDATE statements. After the flush/commit operation, the value attribute on someobject above is expired, so that when next accessed the newly generated value will be loaded from the database.

Using SQL Expressions with Sessions

SQL expressions and strings can be executed via the Session within its transactional context. This is most easily accomplished using the execute() method, which returns a ResultProxy in the same manner as an Engine or Connection:

Session = sessionmaker(bind=engine)
session = Session()

# execute a string statement
result = session.execute("select * from table where id=:id", {'id':7})

# execute a SQL expression construct
result = session.execute(select([mytable]).where(mytable.c.id==7))

The current Connection held by the Session is accessible using the connection() method:

connection = session.connection()

The examples above deal with a Session that’s bound to a single Engine or Connection. To execute statements using a Session which is bound either to multiple engines, or none at all (i.e. relies upon bound metadata), both execute() and connection() accept a mapper keyword argument, which is passed a mapped class or Mapper instance, which is used to locate the proper context for the desired engine:

Session = sessionmaker()
session = Session()

# need to specify mapper or class when executing
result = session.execute("select * from table where id=:id", {'id':7}, mapper=MyMappedClass)

result = session.execute(select([mytable], mytable.c.id==7), mapper=MyMappedClass)

connection = session.connection(MyMappedClass)

Forcing NULL on a column with a default

The ORM considers any attribute that was never set on an object as a “default” case; the attribute will be omitted from the INSERT statement:

class MyObject(Base):
    __tablename__ = 'my_table'
    id = Column(Integer, primary_key=True)
    data = Column(String(50), nullable=True)

obj = MyObject(id=1)
session.add(obj)
session.commit()  # INSERT with the 'data' column omitted; the database
                  # itself will persist this as the NULL value

Omitting a column from the INSERT means that the column will have the NULL value set, unless the column has a default set up, in which case the default value will be persisted. This holds true both from a pure SQL perspective with server-side defaults, as well as the behavior of SQLAlchemy’s insert behavior with both client-side and server-side defaults:

class MyObject(Base):
    __tablename__ = 'my_table'
    id = Column(Integer, primary_key=True)
    data = Column(String(50), nullable=True, server_default="default")

obj = MyObject(id=1)
session.add(obj)
session.commit()  # INSERT with the 'data' column omitted; the database
                  # itself will persist this as the value 'default'

However, in the ORM, even if one assigns the Python value None explicitly to the object, this is treated the same as though the value were never assigned:

class MyObject(Base):
    __tablename__ = 'my_table'
    id = Column(Integer, primary_key=True)
    data = Column(String(50), nullable=True, server_default="default")

obj = MyObject(id=1, data=None)
session.add(obj)
session.commit()  # INSERT with the 'data' column explicitly set to None;
                  # the ORM still omits it from the statement and the
                  # database will still persist this as the value 'default'

The above operation will persist into the data column the server default value of "default" and not SQL NULL, even though None was passed; this is a long-standing behavior of the ORM that many applications hold as an assumption.

So what if we want to actually put NULL into this column, even though the column has a default value? There are two approaches. One is that on a per-instance level, we assign the attribute using the null SQL construct:

from sqlalchemy import null

obj = MyObject(id=1, data=null())
session.add(obj)
session.commit()  # INSERT with the 'data' column explicitly set as null();
                  # the ORM uses this directly, bypassing all client-
                  # and server-side defaults, and the database will
                  # persist this as the NULL value

The null SQL construct always translates into the SQL NULL value being directly present in the target INSERT statement.

If we’d like to be able to use the Python value None and have this also be persisted as NULL despite the presence of column defaults, we can configure this for the ORM using a Core-level modifier TypeEngine.evaluates_none(), which indicates a type where the ORM should treat the value None the same as any other value and pass it through, rather than omitting it as a “missing” value:

class MyObject(Base):
    __tablename__ = 'my_table'
    id = Column(Integer, primary_key=True)
    data = Column(
      String(50).evaluates_none(),  # indicate that None should always be passed
      nullable=True, server_default="default")

obj = MyObject(id=1, data=None)
session.add(obj)
session.commit()  # INSERT with the 'data' column explicitly set to None;
                  # the ORM uses this directly, bypassing all client-
                  # and server-side defaults, and the database will
                  # persist this as the NULL value

Evaluating None

The TypeEngine.evaluates_none() modifier is primarily intended to signal a type where the Python value “None” is significant, the primary example being a JSON type which may want to persist the JSON null value rather than SQL NULL. We are slightly repurposing it here in order to signal to the ORM that we’d like None to be passed into the type whenever present, even though no special type-level behaviors are assigned to it.

New in version 1.1: added the TypeEngine.evaluates_none() method in order to indicate that a “None” value should be treated as significant.

Fetching Server-Generated Defaults

As introduced in the sections Server-invoked DDL-Explicit Default Expressions and Marking Implicitly Generated Values, timestamps, and Triggered Columns, the Core supports the notion of database columns for which the database itself generates a value upon INSERT and in less common cases upon UPDATE statements. The ORM features support for such columns regarding being able to fetch these newly generated values upon flush. This behavior is required in the case of primary key columns that are generated by the server, since the ORM has to know the primary key of an object once it is persisted.

In the vast majority of cases, primary key columns that have their value generated automatically by the database are simple integer columns, which are implemented by the database as either a so-called “autoincrement” column, or from a sequence associated with the column. Every database dialect within SQLAlchemy Core supports a method of retrieving these primary key values which is often native to the Python DBAPI, and in general this process is automatic, with the exception of a database like Oracle that requires us to specify a Sequence explicitly. There is more documentation regarding this at Column.autoincrement.

For server-generating columns that are not primary key columns or that are not simple autoincrementing integer columns, the ORM requires that these columns are marked with an appropriate server_default directive that allows the ORM to retrieve this value. Not all methods are supported on all backends, however, so care must be taken to use the appropriate method. The two questions to be answered are, 1. is this column part of the primary key or not, and 2. does the database support RETURNING or an equivalent, such as “OUTPUT inserted”; these are SQL phrases which return a server-generated value at the same time as the INSERT or UPDATE statement is invoked. Databases that support RETURNING or equivalent include PostgreSQL, Oracle, and SQL Server. Databases that do not include SQLite and MySQL.

Case 1: non primary key, RETURNING or equivalent is supported

In this case, columns should be marked as FetchedValue or with an explicit Column.server_default. The orm.mapper.eager_defaults flag may be used to indicate that these columns should be fetched immediately upon INSERT and sometimes UPDATE:

class MyModel(Base):
    __tablename__ = 'my_table'

    id = Column(Integer, primary_key=True)
    timestamp = Column(DateTime(), server_default=func.now())

    # assume a database trigger populates a value into this column
    # during INSERT
    special_identifier = Column(String(50), server_default=FetchedValue())

    __mapper_args__ = {"eager_defaults": True}

Above, an INSERT statement that does not specify explicit values for “timestamp” or “special_identifier” from the client side will include the “timestamp” and “special_identifier” columns within the RETURNING clause so they are available immediately. On the PostgreSQL database, an INSERT for the above table will look like:

INSERT INTO my_table DEFAULT VALUES RETURNING my_table.id, my_table.timestamp, my_table.special_identifier

Case 2: non primary key, RETURNING or equivalent is not supported or not needed

This case is the same as case 1 above, except we don’t specify orm.mapper.eager_defaults:

class MyModel(Base):
    __tablename__ = 'my_table'

    id = Column(Integer, primary_key=True)
    timestamp = Column(DateTime(), server_default=func.now())

    # assume a database trigger populates a value into this column
    # during INSERT
    special_identifier = Column(String(50), server_default=FetchedValue())

After a record with the above mapping is INSERTed, the “timestamp” and “special_identifier” columns will remain empty, and will be fetched via a second SELECT statement when they are first accessed after the flush, e.g. they are marked as “expired”.

If the orm.mapper.eager_defaults is still used, and the backend database does not support RETURNING or an equivalent, the ORM will emit this SELECT statement immediately following the INSERT statement. This is often undesirable as it adds additional SELECT statements to the flush process that may not be needed. Using the above mapping with the orm.mapper.eager_defaults flag set to True against MySQL results in SQL like this upon flush (minus the comment, which is for clarification only):

INSERT INTO my_table () VALUES ()

-- when eager_defaults **is** used, but RETURNING is not supported
SELECT my_table.timestamp AS my_table_timestamp, my_table.special_identifier AS my_table_special_identifier
FROM my_table WHERE my_table.id = %s

Case 3: primary key, RETURNING or equivalent is supported

A primary key column with a server-generated value must be fetched immediately upon INSERT; the ORM can only access rows for which it has a primary key value, so if the primary key is generated by the server, the ORM needs a way for the database to give us that new value immediately upon INSERT.

As mentioned above, for integer “autoincrement” columns as well as PostgreSQL SERIAL, these types are handled automatically by the Core; databases include functions for fetching the “last inserted id” where RETURNING is not supported, and where RETURNING is supported SQLAlchemy will use that.

However, for non-integer values, as well as for integer values that must be explicitly linked to a sequence or other triggered routine, the server default generation must be marked in the table metadata.

For an explicit sequence as we use with Oracle, this just means we are using the Sequence construct:

class MyOracleModel(Base):
    __tablename__ = 'my_table'

    id = Column(Integer, Sequence("my_sequence"), primary_key=True)
    data = Column(String(50))

The INSERT for a model as above on Oracle looks like:

INSERT INTO my_table (id, data) VALUES (my_sequence.nextval, :data) RETURNING my_table.id INTO :ret_0

Where above, SQLAlchemy renders my_sequence.nextval for the primary key column and also uses RETURNING to get the new value back immediately.

For datatypes that generate values automatically, or columns that are populated by a trigger, we use FetchedValue. Below is a model that uses a SQL Server TIMESTAMP column as the primary key, which generates values automatically:

class MyModel(Base):
    __tablename__ = 'my_table'

    timestamp = Column(TIMESTAMP(), server_default=FetchedValue(), primary_key=True)

An INSERT for the above table on SQL Server looks like:

INSERT INTO my_table OUTPUT inserted.timestamp DEFAULT VALUES

Case 4: primary key, RETURNING or equivalent is not supported

In this area we are generating rows for a database such as SQLite or MySQL where some means of generating a default is occurring on the server, but is outside of the database’s usual autoincrement routine. In this case, we have to make sure SQLAlchemy can “pre-execute” the default, which means it has to be an explicit SQL expression.

Note

This section will will illustrate multiple recipes involving datetime values for MySQL and SQLite, since the datetime datatypes on these two backends have additional idiosyncratic requirements that are useful to illustrate. Keep in mind however that SQLite and MySQL require an explicit “pre-executed” default generator for any auto-generated datatype used as the primary key other than the usual single-column autoincrementing integer value.

MySQL with DateTime primary key

Using the example of a DateTime column for MySQL, we add an explicit pre-execute-supported default using the “NOW()” SQL function:

class MyModel(Base):
    __tablename__ = 'my_table'

    timestamp = Column(DateTime(), default=func.now(), primary_key=True)

Where above, we select the “NOW()” function to deliver a datetime value to the column. The SQL generated by the above is:

SELECT now() AS anon_1
INSERT INTO my_table (timestamp) VALUES (%s)
('2018-08-09 13:08:46',)

MySQL with TIMESTAMP primary key

When using the TIMESTAMP datatype with MySQL, MySQL ordinarily associates a server-side default with this datatype automatically. However when we use one as a primary key, the Core cannot retrieve the newly generated value unless we execute the function ourselves. As TIMESTAMP on MySQL actually stores a binary value, we need to add an additional “CAST” to our usage of “NOW()” so that we retrieve a binary value that can be persisted into the column:

from sqlalchemy import cast, Binary

class MyModel(Base):
    __tablename__ = 'my_table'

    timestamp = Column(
        TIMESTAMP(),
        default=cast(func.now(), Binary),
        primary_key=True)

Above, in addition to selecting the “NOW()” function, we additionally make use of the Binary datatype in conjunction with cast() so that the returned value is binary. SQL rendered from the above within an INSERT looks like:

SELECT CAST(now() AS BINARY) AS anon_1
INSERT INTO my_table (timestamp) VALUES (%s)
(b'2018-08-09 13:08:46',)

SQLite with DateTime primary key

For SQLite, new timestamps can be generated using the SQL function datetime('now', 'localtime') (or specify 'utc' for UTC), however making things more complicated is that this returns a string value, which is then incompatible with SQLAlchemy’s DateTime datatype (even though the datatype converts the information back into a string for the SQLite backend, it must be passed through as a Python datetime). We therefore must also specify that we’d like to coerce the return value to DateTime when it is returned from the function, which we achieve by passing this as the type_ parameter:

class MyModel(Base):
    __tablename__ = 'my_table'

    timestamp = Column(
        DateTime,
        default=func.datetime('now', 'localtime', type_=DateTime),
        primary_key=True)

The above mapping upon INSERT will look like:

SELECT datetime(?, ?) AS datetime_1
('now', 'localtime')
INSERT INTO my_table (timestamp) VALUES (?)
('2018-10-02 13:37:33.000000',)

Partitioning Strategies

Simple Vertical Partitioning

Vertical partitioning places different kinds of objects, or different tables, across multiple databases:

engine1 = create_engine('postgresql://db1')
engine2 = create_engine('postgresql://db2')

Session = sessionmaker(twophase=True)

# bind User operations to engine 1, Account operations to engine 2
Session.configure(binds={User:engine1, Account:engine2})

session = Session()

Above, operations against either class will make usage of the Engine linked to that class. Upon a flush operation, similar rules take place to ensure each class is written to the right database.

The transactions among the multiple databases can optionally be coordinated via two phase commit, if the underlying backend supports it. See Enabling Two-Phase Commit for an example.

Custom Vertical Partitioning

More comprehensive rule-based class-level partitioning can be built by overriding the Session.get_bind() method. Below we illustrate a custom Session which delivers the following rules:

  1. Flush operations are delivered to the engine named master.
  2. Operations on objects that subclass MyOtherClass all occur on the other engine.
  3. Read operations for all other classes occur on a random choice of the slave1 or slave2 database.
engines = {
    'master':create_engine("sqlite:///master.db"),
    'other':create_engine("sqlite:///other.db"),
    'slave1':create_engine("sqlite:///slave1.db"),
    'slave2':create_engine("sqlite:///slave2.db"),
}

from sqlalchemy.orm import Session, sessionmaker
import random

class RoutingSession(Session):
    def get_bind(self, mapper=None, clause=None):
        if mapper and issubclass(mapper.class_, MyOtherClass):
            return engines['other']
        elif self._flushing:
            return engines['master']
        else:
            return engines[
                random.choice(['slave1','slave2'])
            ]

The above Session class is plugged in using the class_ argument to sessionmaker:

Session = sessionmaker(class_=RoutingSession)

This approach can be combined with multiple MetaData objects, using an approach such as that of using the declarative __abstract__ keyword, described at __abstract__.

Horizontal Partitioning

Horizontal partitioning partitions the rows of a single table (or a set of tables) across multiple databases.

See the “sharding” example: Horizontal Sharding.

Bulk Operations

Note

Bulk Operations mode is a new series of operations made available on the Session object for the purpose of invoking INSERT and UPDATE statements with greatly reduced Python overhead, at the expense of much less functionality, automation, and error checking. As of SQLAlchemy 1.0, these features should be considered as “beta”, and additionally are intended for advanced users.

New in version 1.0.0.

Bulk operations on the Session include Session.bulk_save_objects(), Session.bulk_insert_mappings(), and Session.bulk_update_mappings(). The purpose of these methods is to directly expose internal elements of the unit of work system, such that facilities for emitting INSERT and UPDATE statements given dictionaries or object states can be utilized alone, bypassing the normal unit of work mechanics of state, relationship and attribute management. The advantages to this approach is strictly one of reduced Python overhead:

  • The flush() process, including the survey of all objects, their state, their cascade status, the status of all objects associated with them via relationship(), and the topological sort of all operations to be performed is completely bypassed. This reduces a great amount of Python overhead.
  • The objects as given have no defined relationship to the target Session, even when the operation is complete, meaning there’s no overhead in attaching them or managing their state in terms of the identity map or session.
  • The Session.bulk_insert_mappings() and Session.bulk_update_mappings() methods accept lists of plain Python dictionaries, not objects; this further reduces a large amount of overhead associated with instantiating mapped objects and assigning state to them, which normally is also subject to expensive tracking of history on a per-attribute basis.
  • The set of objects passed to all bulk methods are processed in the order they are received. In the case of Session.bulk_save_objects(), when objects of different types are passed, the INSERT and UPDATE statements are necessarily broken up into per-type groups. In order to reduce the number of batch INSERT or UPDATE statements passed to the DBAPI, ensure that the incoming list of objects are grouped by type.
  • The process of fetching primary keys after an INSERT also is disabled by default. When performed correctly, INSERT statements can now more readily be batched by the unit of work process into executemany() blocks, which perform vastly better than individual statement invocations.
  • UPDATE statements can similarly be tailored such that all attributes are subject to the SET clase unconditionally, again making it much more likely that executemany() blocks can be used.

The performance behavior of the bulk routines should be studied using the Performance example suite. This is a series of example scripts which illustrate Python call-counts across a variety of scenarios, including bulk insert and update scenarios.

See also

Performance - includes detailed examples of bulk operations contrasted against traditional Core and ORM methods, including performance metrics.

Usage

The methods each work in the context of the Session object’s transaction, like any other:

s = Session()
objects = [
    User(name="u1"),
    User(name="u2"),
    User(name="u3")
]
s.bulk_save_objects(objects)

For Session.bulk_insert_mappings(), and Session.bulk_update_mappings(), dictionaries are passed:

s.bulk_insert_mappings(User,
  [dict(name="u1"), dict(name="u2"), dict(name="u3")]
)

Comparison to Core Insert / Update Constructs

The bulk methods offer performance that under particular circumstances can be close to that of using the core Insert and Update constructs in an “executemany” context (for a description of “executemany”, see Executing Multiple Statements in the Core tutorial). In order to achieve this, the Session.bulk_insert_mappings.return_defaults flag should be disabled so that rows can be batched together. The example suite in Performance should be carefully studied in order to gain familiarity with how fast bulk performance can be achieved.

ORM Compatibility

The bulk insert / update methods lose a significant amount of functionality versus traditional ORM use. The following is a listing of features that are not available when using these methods:

  • persistence along relationship() linkages
  • sorting of rows within order of dependency; rows are inserted or updated directly in the order in which they are passed to the methods
  • Session-management on the given objects, including attachment to the session, identity map management.
  • Functionality related to primary key mutation, ON UPDATE cascade
  • SQL expression inserts / updates (e.g. Embedding SQL Insert/Update Expressions into a Flush)
  • ORM events such as MapperEvents.before_insert(), etc. The bulk session methods have no event support.

Features that are available include:

  • INSERTs and UPDATEs of mapped objects
  • Version identifier support
  • Multi-table mappings, such as joined-inheritance - however, an object to be inserted across multiple tables either needs to have primary key identifiers fully populated ahead of time, else the Session.bulk_save_objects.return_defaults flag must be used, which will greatly reduce the performance benefits
Previous: Transactions and Connection Management Next: Contextual/Thread-local Sessions